RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2013

FIRST YEAR

Date : 19/12/2013 Time : 11 am – 1 pm COMPUTER SCIENCE (General) Paper : I

Full Marks : 50

[2+3]

[5]

[2]

[3]

[2]

[3]

[3]

[2]

[2]

[3]

[Use Separate Answer Scripts for each group]

Group - A

Answer **any one** question from the following :

- 1. a) Find out 7's complement of $(206.67)_8$
 - b) State advantage and disadvantage of BCD code.
- 2. a) Given a weighted code in which weights are considered as 4 4 3 -2 for decimal digits. Is this code a "Self-Complementary" code?
 b) Perform subtraction for the following using 1's complement method : (100101 110011) [2+2]
 - b) Perform subtraction for the following using 1's complement method : (100101 110011) [3+2]

Answer **any two** questions from the following :

- 3. a) Simplify the Boolean function in SoP form using K-map :
 - F = w'xz + w'yz + x'yz' + wxy'zd = wyz
 - b) State generalized DeMorgan's Law. Using this law —prove that complement of an odd function is an even one. [2+1]

c) Express the following function in Product of maxterm : F(x,y,z) = 1. [2]

- 4. a) Test whether the bit 0111001 is correct using even parity Hamming Code. [3]
 b) List the Huntington Postulates of Boolean-Algebra. [7]
- 5. a) State drawback of K-map method.
 - b) Simplify the following Boolean expression : AB + A'C' + AB'C(AB+C)
 - c) Define Non-weighted Code.
 - d) Prove that A + BC = (A+B).(A+C)

6. a) "In One's complement there are two representations of zero" — Critically comment on it.

- b) Convert the binary number $(110011)_2$ into its equivalent gray code.
- c) Write down steps to convert a number from base b1 into base b2.
- d) Express the Boolean function F = xy + x'z in product of maxterm form.

Group - B

An	swe	er any one question from the following :	
7.	De	esign an asynchronous 4-bit up-down. Counter & explain its operation with a truth-table.	[5]
8.	a)	How can you convert a Decoder into DEMUX?	
	b)	Differentiate between Combinational & Sequential Circuit.	[2+3]
An	swe	er any two questions from the following :	
9.	a)	Design an Octal-to-binary encoder.	[4]
	b)	Design the following function using MUX : $\Sigma m(0, 2, 4, 6, 7)$.	[4]
	c)	Why DEMUX is called 'Data Distributor'?	[2]
10.	a)	Using Logic Diagram convert a J-K Flip-Flop into a D Flip-Flop.	[5]
	b)	Draw a Circuit Diagram & Write the truth table of J-K Flip-Flop.	[3]
	c)	What do you mean by edge triggering and level triggering Flip-Flop?	[2]

11. a)	Explain the difference between asynchronous and synchronous Counter with logic diagrams.	[4]
b)	Design and implement Mod-6 up synchronous Counter.	[4]
c)	Define Shift register.	[2]
12. a)	Differentiate between Flip-Flop and Latch.	[2]
b)	What is Race-Around Condition?	[2]
c)	State disadvantages of Riple Counter.	[2]
d)	Design a full adder circuit using two half-adder circuits. Write down the truth table and Boolean	
	function also.	[4]

80參G